skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Javadi, Parisa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract To achieve net zero carbon emissions by mid-century, the United States may need to rely on carbon dioxide removal (CDR) to offset emissions from difficult-to-decarbonize sectors and/or shortfalls in near-term mitigation efforts. CDR can be delivered using many approaches with different requirements for land, water, geologic carbon storage capacity, energy, and other resources. The availability of these resources varies by region in the U.S. suggesting that CDR deployment will be uneven across the country. Using the global change analysis model for the United States (GCAM-USA), we modeled six classes of CDR and explored their potential using four scenarios: a scenario where all the CDR pathways are available (Full Portfolio), a scenario with restricted carbon capture and storage (Low CCS), a scenario where the availability of bio-based CDR options is limited (Low Bio), and a scenario with constraints on enhanced rock weathering (ERW) capabilities (Low ERW). We find that by employing a diverse set of CDR approaches, the U.S. could remove between 1 and 1.9 GtCO2/yr by midcentury. In the Full Portfolio scenario, direct air carbon capture and storage (DACCS) predominates, delivering approximately 50% of CO2removal, with bioenergy with carbon capture and storage contributing 25%, and ERW delivering 11.5%. Texas and the agricultural Midwest lead in CDR deployment due to their abundant agricultural land and geological storage availability. In the Low CCS scenario, reliance on DACCS decreases, easing pressure on energy systems but increasing pressure on the land. In all cases CDR deployment was found to drive important impacts on energy, land, or materials supply chains (to supply ERW, for example) and these effects were generally more pronounced when fewer CDR technologies were available. 
    more » « less
  2. Abstract China has large, estimated potential for direct air carbon capture and storage (DACCS) but its deployment locations and impacts at the subnational scale remain unclear. This is largely because higher spatial resolution studies on carbon dioxide removal (CDR) in China have focused mainly on bioenergy with carbon capture and storage. This study uses a spatially detailed integrated energy-economy-climate model to evaluate DACCS for 31 provinces in China as the country pursues its goal of climate neutrality by 2060. We find that DACCS could expand China’s negative emissions capacity, particularly under sustainability-minded limits on bioenergy supply that are informed by bottom-up studies. But providing low-carbon electricity for multiple GtCO2yr−1DACCS may require over 600 GW of additional wind and solar capacity nationwide and comprise up to 30% of electricity demand in China’s northern provinces. Investment requirements for DACCS range from $330 to $530 billion by 2060 but could be repaid manyfold in the form of avoided mitigation costs, which DACCS deployment could reduce by up to $6 trillion over the same period. Enhanced efforts to lower residual CO2emissions that must be offset with CDR under a net-zero paradigm reduce but do not eliminate the use of DACCS for mitigation. For decision-makers and the energy-economy models guiding them, our results highlight the value of expanding beyond the current reliance on biomass for negative emissions in China. 
    more » « less